0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 149 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 1027 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 147 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 234 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 63 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 672 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 275 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, EXP)
from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
from(X) → cons(X, n__from(s(X))) [1]
first(0, Z) → nil [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
sel(0, cons(X, Z)) → X [1]
sel(s(X), cons(Y, Z)) → sel(X, activate(Z)) [1]
from(X) → n__from(X) [1]
first(X1, X2) → n__first(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__first(X1, X2)) → first(X1, X2) [1]
activate(X) → X [1]
from(X) → cons(X, n__from(s(X))) [1]
first(0, Z) → nil [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
sel(0, cons(X, Z)) → X [1]
sel(s(X), cons(Y, Z)) → sel(X, activate(Z)) [1]
from(X) → n__from(X) [1]
first(X1, X2) → n__first(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(n__first(X1, X2)) → first(X1, X2) [1]
activate(X) → X [1]
from :: s:0 → n__from:cons:nil:n__first cons :: s:0 → n__from:cons:nil:n__first → n__from:cons:nil:n__first n__from :: s:0 → n__from:cons:nil:n__first s :: s:0 → s:0 first :: s:0 → n__from:cons:nil:n__first → n__from:cons:nil:n__first 0 :: s:0 nil :: n__from:cons:nil:n__first n__first :: s:0 → n__from:cons:nil:n__first → n__from:cons:nil:n__first activate :: n__from:cons:nil:n__first → n__from:cons:nil:n__first sel :: s:0 → n__from:cons:nil:n__first → s:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
sel
activate
from
first
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
nil => 0
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ from(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
first(z, z') -{ 1 }→ 0 :|: Z >= 0, z' = Z, z = 0
first(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
first(z, z') -{ 1 }→ 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(X, from(X')) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0
sel(z, z') -{ 2 }→ sel(X, first(X1', X2')) :|: z = 1 + X, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), X >= 0
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
first(z, z') -{ 1 }→ 0 :|: Z >= 0, z' = Z, z = 0
first(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
first(z, z') -{ 1 }→ 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(X, first(X1', X2')) :|: z = 1 + X, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), X >= 0
sel(z, z') -{ 3 }→ sel(X, 1 + X'') :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(X, 1 + X'' + (1 + (1 + X''))) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X''
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(z - 1, first(X1', X2')) :|: X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
{ first, activate } { from } { sel } |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(z - 1, first(X1', X2')) :|: X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(z - 1, first(X1', X2')) :|: X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: ?, size: O(n1) [1 + z + 2·z'] activate: runtime: ?, size: O(n1) [1 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 2 }→ sel(z - 1, first(X1', X2')) :|: X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] from: runtime: ?, size: O(n1) [3 + 2·z] |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] from: runtime: O(1) [1], size: O(n1) [3 + 2·z] sel: runtime: ?, size: EXP |
activate(z) -{ 6 + 2·X2 }→ s'' :|: s'' >= 0, s'' <= 1 * X1 + 2 * X2 + 1, X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 10 + 2·Z }→ 1 + Y + (1 + (z - 1) + s) :|: s >= 0, s <= 2 * Z + 1, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Z >= 0, X >= 0, z = 0, z' = 1 + X + Z
sel(z, z') -{ 2 }→ sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
sel(z, z') -{ 7 + 2·X2' }→ sel(z - 1, s') :|: s' >= 0, s' <= 1 * X1' + 2 * X2' + 1, X2' >= 0, Y >= 0, X1' >= 0, z' = 1 + Y + (1 + X1' + X2'), z - 1 >= 0
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
sel(z, z') -{ 3 }→ sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X''
first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] from: runtime: O(1) [1], size: O(n1) [3 + 2·z] sel: runtime: EXP, size: EXP |